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Flat-band localization in the Anderson-Falicov-Kimball model
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The insulator-metal-insulator transition caused by a flatband is analyzed within dynamical mean-field theory
using the Anderson-Falicov-Kimball model. We observe quantitative disagreement between the present ap-
proach and previous results. The presence of interactions enhances delocalization.
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I. INTRODUCTION

Recent studies have shown a new disorder-induced metal-
insulator transition (MIT) of one-electron states, called the
“inverse Anderson transition.”"? The existence of this tran-
sition becomes already visible for noninteracting particles
when the system has highly degenerated localized states
forming a flatband. In a flatband localized states may melt
into extended states due to disorder. For weak disorder, the
localization is not a consequence of the strength of disorder
but of the flatband. Increasing the degree of disorder
localization-delocalization and delocalization-localization
transitions appear.

Different aspects must appear when we also consider in-
teractions between particles of the system. The present work
addresses this issue. The investigation of this problem is par-
ticularly rich. The interaction causes a Mott-Hubbard MIT
(Ref. 3) that competes with the Anderson transition.*

The inverse Anderson transition has been studied using
various numerical techniques, among them, level statistics,’
f(a@) characteristics of wave functions® and the participation
radius’ framework. However, these powerful tools are not
adequate for interacting systems in which matrices of high
order must be exactly diagonalized restricting the study to
extremely small systems.

The dynamical mean-field theory (DMFT) (Ref. 8) is a
good tool to investigate the Mott-Hubbard-Anderson MIT in
lattice electrons with local interactions and disorder. The
Anderson transition has, for example, been explored on the
Bethe lattice considering the Hubbard® and Falikov-Kimball
models.'” The metal and the insulator phases are detected by
analyzing directly the local density of states (LDOS). The
averaged LDOS can vanish in the band center at a critical
disorder strength for a wide variety of averages.'""'? In par-
ticular, the arithmetic mean of this random one-particle quan-
tity is noncritical at the Anderson transition and hence cannot
help to detect the localization transition. By contrast, the
geometric mean gives a better estimate of the averaged value
of the LDOS,>!? as it vanishes at a critical disorder strength
and hence provides an explicit criterion for the Anderson
localization.®!'%!> We have adopted the Holder mean and
analyzed how the averaged LDOS depends on the Holder
parameter.

In this paper, we investigate the disorder-induced
insulator-metal transition in a flatband of the Falikov-
Kimball model using the DMFT. A flatband is due to highly
degenerated states. These states can be described by a com-
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plete set of localized wave functions on a periodic lattice.
The existence of a localized eigenstate generates a set of
eigenstates with the same energy at equivalent positions of
the periodic lattice. One finds a flatband within a specific
subset of the parameter space describing the Hamiltonian in
which all of the dispersion relations become flat. In the
Falikov-Kimball model, a flatband can be obtained for the
noninteracting mobile species on a diamond lattice with
fourfold-degenerated orbitals.! We present the ground-state
phase diagram for different values of a parameter measuring
the disorder strength and the dependence of the MIT transi-
tion on the Coulomb repulsion between fermions. Recently,
we have applied the DMFT to this model. First, we showed
that not only the geometric mean can offer a good approxi-
mation for the averaged LDOS providing an explicit crite-
rion for Anderson localization. We found that the averaged
LDOS can vanish in the band center at a critical disorder
strength for a wide variety of generalized Holder mean.!!
Second, we have analyzed how the presence of the next-
nearest-neighbor hopping influences the phase diagram of
the ground state of this model, and, third, we have studied
the main effects of the long-range correlated disorder.'?

This paper is organized as follows. In Sec. II we introduce
the Anderson-Falikov-Kimball model. The DMFT approach
is described in Sec. IIl. In Sec. IV we present the results
concerning the phase diagram. Finally in Sec. V we con-
clude.

II. MODEL

The Anderson-Falicov-Kimball model'? is a tight-binding
model having two species of fermionic particles, mobile and
immobile, which interact with each other when both are on
the same lattice site. We introduce a local random potential
for the mobile particles, giving rise to a competition between
interaction and disorder. This model has been applied to
mixed-valence compounds of rare earth, transition-metal ox-
ides, binary alloys and metal ammonia solutions.'® Its Hamil-
tonian is

H=2 ecici—1>, C?Cj"'UEﬁfiC:’rCn (1)
i @ij) i

where ¢} (c;) and f; (f;) are, respectively, the creation (anni-

hilation) operators for the mobile and immobile fermions at

lattice site i. € is a random potential describing the local

disorder, 7 is the electron transfer integral connecting nearest-
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neighbor sites, and U is the Coulomb repulsion when mobile
and immobile particles occupy the same site. We consider
that the occupation of immobile particles is site independent
having a probability p=1/2. The number of mobile particles
on site i is given by n;=c/c;. A chemical-potential u is in-
troduced for the mobile subsystem to fix the system in the
half-filled band (n;=1/2). Here, the energy will be given in
units of the hopping element ¢ (i.e., t=1).

The condition of finding a flatband is to find a set of the
parameter space describing the Hamiltonian in which all of
the dispersion relations become flat. For example, flatband
has been found for tight-binding electrons on the hexagonal
lattice in which each site has three orbitals.!” Also, single-
electron on the Hubbard model has a highly degenerated
ground state on the Kagome lattice.'® In the Falikov-Kimball
model, two degenerate bands can be obtained from a particu-
lar set of hopping, similarly to the method used in Ref. 17. A
typical example is a diamond lattice with fourfold-
degenerated orbitals.! However, here the density of states
come in as an initial condition of the DMFT, and thus we do
not worry about the lattice that generate the flatband.

III. DYNAMICAL MEAN-FIELD EQUATIONS

The DMEFT is calculated from the Hilbert transform,

B doNy(w)
G(E) = f WE) - w+1/G(E)’

(2)

where Ny(e€) is the noninteracting density of states, G(E) the
translationally invariant Green’s function, and 7(E) a hybrid-
ization function describing the coupling of a selected lattice
site with the rest of the system.'?

The band form is inserted in Ny(€), in order that for the
flatband the noninteracting density of states is

NoE) = S[E - Eq) + (E + ) ®)

where the highly degenerated energies are = FE,. The DMFT
allows us to choose arbitrarily E; however, its value de-
pends directly on the lattice and on the set of parameters of
the Hamiltonian for which the dispersion relations become
flat. The two degenerate bands are obtained for the noninter-
acting mobile species in the absence of f particles. The hop-
ping ¢ is finite. It and the E, are obtained through the method
used in Ref. 17.

The relation between G(E) and #7(E) is obtained in a
straightforward way from Egs. (2) and (3),

[ 1
1E=N\ 6@ 5 6@ @

The LDOS is given by'3

P(E, Ei) = - lIrl'l G(E, Ei)’ (5)
w

where G(E,¢;) is the local €-dependent Green’s function.
For the Anderson-Falicov-Kimball model we obtain that!!
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FIG. 1. Density of states for disorder strength A=0 and U=1, 4,
8, and 12.
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P(E,e) = - (6)
where o;=FE—¢€;—r and r and s are, respectively, the real and
imaginary parts of 7(E).

We consider that €; is an independent random variable
characterized by a probability function p(e)=P(A/2
—|€l)/ A, with ® being the step function. The parameter A is
a measure for the disorder strength. The self-consistent
DMEFT equations are closed inserting

G(E):fddﬁq(i,,, (7)
E—
where
P,(E) = {Z [P(E, e,->]q}”q. (®)

The parameter ¢ defines the g-Holder average. The arith-
metic and geometric mean are found, respectively, using g
=1 and ¢—0.

The DMFT algorithm can be summarized as: (i) we
choose an initial P (E); (ii) from Eq. (7) we determine G(E);
(iii) from Eq. (4) we obtain 7(E); (iv) from Eq. (6) we find
P(E,¢); and finally, (v) from Eq. (8) we have P (E). This
algorithm is iterated until we find the stable P (E) function.

IV. RESULTS

First, we investigate the case without disorder. In this
limit, where A=0, we find, independently of ¢, that the ana-
lytical expression for the density of states of the flatband is

E
m[E2 - (Ey+ UR)[(Ey - U2)? - E2]

if [(Ey—U/2)|<|E|<|(Ey+U/2)| and P (E)=0, otherwise.
Typical results are shown in Fig. 1. In order to compare our
results with Refs. 1 and 2, we have set the highly degener-
ated state at Ey=4. Below U=8 we have two bands of band-
width U. For U>8 we also have two bands, but now the
bandwidth is constant and equal to 8. The band gap is always

P/(E)= )
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FIG. 2. Averaged local density of states at U=0 and disorder
strength A=1, 5, and 10 for (a) g=1 and (b) ¢=0.

|8—U|. This band gap for U> 1 exhibits the Mott insulator
relationship between the band gap and the repulsive Cou-
lomb potential (band gap ~U). Note that for U=8 the system
presents only one band of bandwidth 8, and only for this case
P,(0) #0.

Next, let us explore the case A # 0. Here, the results are
obtained numerically. We considered as initial P (E) a uni-
form distribution with bandwidth greater than the Lifshitz
band edge. Then we determined G(E) in order to obtain 7(E)
and finally the new values of P,(E). This procedure is re-
peated until we find the stable configuration.

Figure 2 shows the energy dependence of the averaged
LDOS for U=0 and typical values of A. Note that the inclu-
sion of the disorder (i.e., A # 0) suppresses the highly degen-
erated localized states. We obtain the Anderson localization
for a fixed ¢ varying the disorder strength A for each value of
U, and then determining the values of A when P (E)=0. For
the highly degenerated energy state, the arithmetic mean (g
=1) of the LDOS does not vanish at a finite critical disorder
strength. Hence, we consider it to be noncritical at the Ander-
son transition. Using the geometric average (¢=0), the
LDOS vanishes at the highly degenerated energy state for a
finite value of A. The detection of the Anderson localization
is obtained using g=0.

Figure 3 presents the phase diagram of the ground state
for the Anderson-Falikov-Kimball model as a function of
energy for U=0 using the geometrical average. The results of
Ref. 1 are shown in Fig. 3(a). Our results are presented in
Fig. 3(b). As we use an iterative process, our P,(E) not al-
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FIG. 3. Ground-state phase diagram as a function of energy for
U=0. Case (a) was taken from Ref. 1. Case (b) was determined
from the numerical solution of the DMFT equations for ¢g=0. The
dashed region is the energy area in which we cannot estimate the
transition points accurately. Lines are guides to the eyes.

ways converges to a stable value for large A. Within the
dashed area of Fig. 3 we cannot estimate the transition points
accurately. We can observe three phases: extended gapless,
localized gapless, and band gap.'?

The DMFT gives different results from the ones obtained
in Refs. 1 and 2. The DMFT approach reduces the extended
phase, increasing the critical disorder A, for the localization-
delocalization transition and decreasing the one for the
delocalization-localization transition. The considerable quan-
titative disagreement between both approaches requires new
investigations to better understand these differences.

We now consider the influence of the Coulomb repulsion
U on the results. Figure 4 shows the averaged LDOS for A
=0.1, 0.5, 1.0, and 5.0 at U=1. The results for U=4 are
exhibited in Fig. 5, for A=1, 2, 5, and 10. As already ob-
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FIG. 4. Averaged local density of states at U=1 and disorder
strength A=0.1, 0.5, 1.0, and 5.0 for ¢=0.

153104-3



BRIEF REPORTS

0.3

0.2 1

Po(E)

0.1 -

FIG. 5. Averaged local density of states at U=4 and disorder
strength A=1, 2, 5, and 10 for ¢=0.

served for U=0, we find two symmetric bands. However, for
small A, the LDOS at the end bands, corresponding to the
smallest and largest energies, are higher than those at the
band centers. The band centers correspond to the highly de-
generated states for U=0. Large A destroy the influence of
the flatband and favor higher LDOS values at band centers
and smaller ones at the edge bands. When A is large enough,
the LDOS vanish and the extended phase disappears. For
fixed A, the bandwidth grows with increasing U.

Finally, in Fig. 6 we present a complete ground-state
phase diagram for three different values of U, namely, U
=0, 1, and 4. With U increases the extended phase, showing
that the interaction may enhance delocalization.

V. CONCLUSIONS

In this Brief Report, we studied the solutions of the
Anderson-Falicov-Kimball model involving a highly degen-
erated localized states forming a flatband. We have shown
that the present disorder-induced insulator-metal transition of
one-electron states, called “inverse Anderson transition” can
be obtained within dynamical mean-field theory. However,
we observed a considerable quantitative disagreement be-
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FIG. 6. Ground-state phase diagram as function of energy for
U=0, 1, and 4 obtained from the numerical solution of the DMFT
equations. The dashed region is the energy area in which we cannot
estimate the transition points accurately. Lines are guides to the
eyes.

tween the present approach and the previous results.!?

The DMFT reduces the extended phase, increasing the
critical disorder A, for the localization-delocalization transi-
tion and decreasing A, for the delocalization-localization
transition. Our analysis predicts a minimum of about 50%
decrease in A, with respect to the results of Refs. 1 and 2 for
the delocalization-localization transition. For |E|<6.5, the
localization-delocalization transition line shifting by a
mostly about 50% to the two different approaches. For |E|
>6.5, whereas in our case the extended gapless region dis-
appears, the results of Refs. 1 and 2 show this phase.

We also studied the dependence of the MIT transition on
the interaction between particles of the model and showed
that increasing the interaction parameter reduces the ex-
tended phase for U=0. As the doping of an impurity in the
flatband has the same characteristics of the impurity states in
the quantum Hall system,? it would be interesting to do simi-
lar calculations for such a system.
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